Mixed Finite Elements as Finite Differences for Elliptic Equations on Triangular Elements
ثبت نشده
چکیده
منابع مشابه
Preconditioned Chebyshev collocation methods and triangular finite elements
This paper analyzes triangular finite elements for the preconditioning of Chebyshev collocation solutions of elliptic boundary value problems. Results are given for scalar model problems and for both Stokes and Navier-Stokes equations.
متن کاملOn the Implementation of Mixed Methods as Nonconforming Methods for Second-order Elliptic Problems
In this paper we show that mixed finite element methods for a fairly general second-order elliptic problem with variable coefficients can be given a nonmixed formulation. (Lower-order terms are treated, so our results apply also to parabolic equations.) We define an approximation method by incorporating some projection operators within a standard Galerkin method, which we call a projection fini...
متن کاملEnhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry
We present an expanded mixed finite element method for solving second-order elliptic partial differential equations on geometrically general domains. For the lowest-order Raviart–Thomas approximating spaces, we use quadrature rules to reduce the method to cell-centered finite differences, possibly enhanced with some face-centered pressures. This substantially reduces the computational complexit...
متن کاملMixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کاملA Family of Conforming Mixed Finite Elements for Linear Elasticity on Triangular Grids
This paper presents a family of mixed finite elements on triangular grids for solving the classical Hellinger-Reissner mixed problem of the elasticity equations. In these elements, the matrix-valued stress field is approximated by the full C0-Pk space enriched by (k − 1) H(div) edge bubble functions on each internal edge, while the displacement field by the full discontinuous Pk−1 vector-valued...
متن کامل